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The Prediction Problem

• Linear prediction

• An Introduction to Nonlinear Predictive Models

• Signal Modeling and Prediction by Neural Networks

• Volterra Filters

• Kalman State Dependent Models

• Nonlinear Time Series Examples

• Neural Network Prediction of Nonlinear Time Series

• A comparative Study and Conclusion
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Linear Prediction

• FIR Wiener Filter (Tapped Delay Line)

• AR/ARMA Models

• Linear Optimal Kalman Filters
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Nonlinear Predictive Models

• Nonlinear Autoregressive Models
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The best prediction of Xt given Xt-1, …… , Xt-p is its conditional 
mean
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where h(.) is an unknown smooth function
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Nonlinear Predictive Models

A feedforward network is a nonlinear approximation to h given by
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The weight matrix is lower diagonal and will allow no feedback. Thus the 
feedforward network serves as nonlinear mapping from previous 
observation onto predictions of future observations. The function f(x) is 
typically a sigmoid.

The parameters Wi and Wij are estimates from a training sample xo
i, … xo

N, 
thereby obtaining an estimate of  h and h. Estimates are obtained by 
minimizing the sum of square residuals                           by backpropogationå
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Nonlinear Predictive Models

• Nonlinear ARMA Models
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Predict:
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If the h(.) is chosen, then a recurrent network can approximate it as
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This model is a special case of the fully connected recurrent network

å å
= =

- ÷÷
ø

ö
çç
è

æ
=

I

1 1
''~

i

n

j
jtiji xWfWX

where w’’ij are coefficients of a full matrix
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Signal Modeling and Prediction by Neural Networks

• Given (by experimental measurements or by simulation) X(.) at discrete  
times in some time window containing times less than t, predict X(t+P), 
where P is some prediction time step in the future

• Use backpropogation and neural network architecture for constructing a 
function
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Where 
O(t+P): the output of a single neuron in the output layer
I1->Im: Input neurons that take on values x(t), x(t-Δ), .. x(t-mΔ)
Δ: the time delay
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Signal Modeling and Prediction by Neural Networks

• The O(t+p) takes the values X(t+P)

• For Feedforward networks, select input values:

I1 = x(tp)
I2 = x(tp- Δ)
I3 = x(tp- 2Δ)
.
.
.
Im = x(tp- (m-1)Δ)

with associated output values O = X(tp + P) for discrete times labelled by tp.



9

Signal Modeling and Prediction by Neural Networks

• Takens Theorem (1981) provides a guide for choosing m such that

dA < m+1 < 2dA+1

where dA is the embedding dimension

• Takens theorem provides no information on Δ

• This prediction procedure is the nonlinear extension of the linear 
Widrow Hoff Algorithm
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The Volterra Series

In the case of a linear causal model, the output at any time instant is a linear 
combination of the present and past values of the input. In other words,
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For a non-linear causal model, the output at any time instant is a non-linear 
function of the present and the past values of the input.
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If we assume that f is sufficiently well behaved so that it can be expanded 
in a Taylor series about the point O=(0,0,0), then we can expand the RHS 
of the above expression and write,
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The Volterra Series
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This expansion is knows as (discrete time) Volterra Series, and it provides 
an important type of representation for non-linear models.
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The Volterra Series (Contd.)

Here we consider the Second order Volterra Filter (SVF), that is the above 
series reduced to just the first three terms.

Let x(n) be the input to the filter at time instant ‘n’. Then the output is,
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A and B are the linear and the quadratic weights of length m and order m 
respectively.
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The Volterra Series (Contd.)

Linear
Filter A

Quadratic
Filter B

Σ Σ
+
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y(n)

s(n) Desired
Signal

Error
Signal

ec(n)
Input
Signal

X(n)

Many algorithms exist for updating the linear and quadratic weights of a SVF.

The basic scheme is as shown in the above figure. The input x(n) and its past
m-1 samples are fed to the filter. The output of the filter is compared with the
desired signal and the error signal obtained is used to update the linear and
quadratic weights. The desired signal for the prediction problem will be the
time series sample one time instant ahead. The weights are frozen after

training.
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The State-Dependent Model Approach

Let us assume that the input Xt can be described in terms of finitely many 
values of the past input {Xt} and output {et}
Then we may write,
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Assuming that the function h is analytic, we may expand the RHS of the above 
equation in a Taylor series about an arbitrary but fixed point t0. Using only a 
first order expansion, we obtain
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The State-Dependent Model Approach (Contd.)

We can now rewrite the above equation in the form
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We call this equation a State-dependent Model of order (k,l)
Augmenting the state vector with a constant unity to take care of µ in the
SDM, we have,
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Let us denote the components of xt by
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We may then write

The State-Dependent Model Approach (Contd.)
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The simples non-trivial assumption that we can make about the parameters

µ, φ, and ψ is that each is a linear function of the state vector xt, so that we 
may write
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The State-Dependent Model Approach (Contd.)
The basic strategy is to allow βu

(t)γu
(t) and αu

(t) to wander in the form of ‘random 
walks’, and the estimation procedure would then determine, for eat t, those values of 
βu

(t)γu
(t) and αu

(t) which would minimize the discrepancy between the observed value of 
Xt+1 and its predictor Xt+1 , computed from the model. The estimation procedure is thus 
based on a sequential type of algorithm, similar in the nature to the ‘Kalman filter’ 
algorithm.

The time series data considered in the computer simulations all fall under basically 
“AR” type of SDMs. Hence a Kalman recursion is now developed for this model. The 
approach followed can readily be extended to the more general “ARMA” type SDM.

An “AR” SDM takes the form
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The State-Dependent Model Approach (Contd.)

Vt is a matrix having a multivariate normal distribution with zero means and
variance-covariance matrix ΣV
We can now rewrite 1 in the form:

Xt = Ht Qt + et
where Ht is a 1 by (k+1)2 row vector given by,
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and Qt is a (k+1)2 by 1 column vector given by,
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The evolution of Qt over time is given by

Qt = Ft-1Qt-1 +Wt

where the (k+1)2 by (k+1)2 matrix Ft-1 is given by
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The State-Dependent Model Approach (Contd.)
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If we think Qt as the “state” and Ht as the “observation” matrix, then a 
direct application of the Kalman algorithm to the above equations gives
the recursion
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The State-Dependent Model Approach (Contd.)
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where Kt is the Kalman “gain” matrix give by
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The State-Dependent Model Approach (Contd.)

))ˆ)(ˆ((

))ˆ)(ˆ((

0
00

1111

1

T
ttttt

T
tttttt

v
t

EC

FFE

F

Q-QQ-Q=

Q-QQ-Q=F

ú
û

ù
ê
ë

é
S

=

----

-

where

The initial states are obtained by fitting an AR model for an initial
Stretch of data.


