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Linear Prediction

* FIR Wiener Filter (Tapped Delay Line)
« AR/ARMA Models

e Linear Optimal Kalman Filters



Nonlinear Predictive Models

» Nonlinear Autoregressive Models

X =h(X, X ... X, )+e

The best prediction of X, given X, 1, ...... , Xi.p 18 its conditional
mean

where h(.) 1s an unknown smooth function



Nonlinear Predictive Models

A feedforward network is a nonlinear approximation to h given by

_ 1 p
X, = WX X o X)) = ZWf [ZW,-J-XUJ

The weight matrix is lower diagonal and will allow no feedback. Thus the
feedforward network serves as nonlinear mapping from previous
observation onto predictions of future observations. The function f(x) is

typically a sigmoid.

The parameters Wi and Wij are estimates from a training sample x°, ... X°,
thereby obtaining an estimate of h and h. Estimates are obtained by

minimizing the sum of square residuals Z (x, —X)> by backpropogation
t=1



Nonlinear Predictive Models

 Nonlinear ARMA Models

X, =h(X, [, X, yeeeern. X, e e ... e_ )+e

t—p2 T t-12>t=-2

Predict:
h( AT, G X, e e ... ,'é;_p)

t—p2 t-1°"t=-2

If the h(.) is chosen, then a recurrent network can approximate it as

T oo B XX sz(z : []+ZW'U(x” »]

This model is a special case of the fully connected recurrent network
- I
X=ZWf(ZW"U X, ])

where w”’, j are coefficients of a full matrix



Signal Modeling and Prediction by Neural Networks

* Given (by experimental measurements or by simulation) X(.) at discrete
times in some time window containing times less than t, predict X(t+P),
where P 1s some prediction time step in the future

« Use backpropogation and neural network architecture for constructing a
function

Ot +P)= f(L (), I,(t =Ny I (t—mA))

Where
O(t+P): the output of a single neuron in the output layer
[,->1: Input neurons that take on values x(t), x(t-A), .. X(t-mA)
A: the time delay



Signal Modeling and Prediction by Neural Networks

* The O(t+p) takes the values X(t+P)

* For Feedforward networks, select input values:

L, = X(tp)

1P - X(tp_ A)

I, = X(t,- 2A)

im — X(tp— (m-1)A)

with associated output values O = X(t, + P) for discrete times labelled by t,.



Signal Modeling and Prediction by Neural Networks

« Takens Theorem (1981) provides a guide for choosing m such that
d, <m+1 <2d,+1

where d, 1s the embedding dimension

» Takens theorem provides no information on A

 This prediction procedure is the nonlinear extension of the linear
Widrow Hoff Algorithm



The Volterra Series

In the case of a linear causal model, the output at any time instant 1s a linear
combination of the present and past values of the input. In other words,

& —— H(z) H—— X

For a non-linear causal model, the output at any time instant is a non-linear
function of the present and the past values of the input.

X, =f(ee_,e_,,..)

If we assume that f 1s sufficiently well behaved so that it can be expanded
in a Taylor series about the point O=(0,0,0), then we can expand the RHS
of the above expression and write,

10



The Volterra Series

Xt = /u + Z guet—u + Z Z guvet—uet—v
u=0 =0 v=

u=0 v=0

+ Z Z Z guvwet—uet_vet_w +.....

3
g, = of , ¢etc.,.
5et—u5et—v5et—w 0

This expansion 1s knows as (discrete time) Volterra Series, and it provides
an important type of representation for non-linear models.
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The Volterra Series (Contd.)

Here we consider the Second order Volterra Filter (SVF), that is the above
series reduced to just the first three terms.

Let x(n) be the input to the filter at time instant ‘n’. Then the output is,

y(n)=A"X(n)+ X" (n)B(n)X(n)
where
X(n)=[x(n),x(n-1),......x(n—m+1)]

A and B are the linear and the quadratic weights of length m and order m

respectively.
A=[a(0),a(l),.......a(m =1

| b(m—-10) ... b(m-1,m-1)
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The Volterra Series (Contd.)

Desired
X(n) | Linear X s(n) Signal
ISI;I;E; | Filter A 1 +
5 ym, s e:(n)
- Error
Quadratic } Signal
Filter B ]

Many algorithms exist for updating the linear and quadratic weights of a SVF.
The basic scheme 1s as shown in the above figure. The input x(n) and its past
m-1 samples are fed to the filter. The output of the filter is compared with the
desired signal and the error signal obtained is used to update the linear and
quadratic weights. The desired signal for the prediction problem will be the

time series sample one time instant ahead. The weights are frozen after

training.
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The State-Dependent Model Approach

Let us assume that the input X, can be described in terms of finitely many
values of the past input {X,} and output {e,}
Then we may write,

X, =h(X, [, X, yeeeern. v X € 15€ e, e,_,)+e,

Assuming that the function h is analytic, we may expand the RHS of the above

equation in a Taylor series about an arbitrary but fixed point t,. Using only a
first order expansion, we obtain

Xt - h(XtO_l,Xto_z oooooooo 9 Xto_p,eto_l,eto_z oooooooo D) eto_p)

) L X — X )+ Y g (X e, — e +e,

where, X, denotes the state vector at time't'
X, =€ 1seeeees€rs X, jifseeeeeee

and f ,g _depend on the first order partial derivatives of h.
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The State-Dependent Model Approach (Contd.)

We can now rewrite the above equation in the form

k l
X, + Z% (X)X, = Hx,)+e + Z v, (x, e,
u=l1 u=l

We call this equation a State-dependent Model of order (k,1)

Augmenting the state vector with a constant unity to take care of p in the
SDM, we have,

X =hlle e, X, fyrrnn X, ]
Let us denote the components of x, by
1 2 m
x, = (x®,x2,xm)
where
1 m —
xV=1, xP=e_, o, X" =x (m=k+I+1)
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The State-Dependent Model Approach (Contd.)

We may then write

The simples non-trivial assumption that we can make about the parameters
W, @, and y 1s that each is a linear function of the state vector x,, so that we

may write

Wu (xt+1) Wu (X ) + AxtHﬂ(Hl)
B, (x,.) =4, (x)+Ax, 7,
:u(xtﬂ) ILI(X ) + AX‘-t+la(t+l)
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The State-Dependent Model Approach (Contd.)

The basic strategy is to allow ,Vy,® and a,® to wander in the form of ‘random
walks’, and the estimation procedure would then determine, for eat t, those values of
B, Wy, ® and a,® which would minimize the discrepancy between the observed value of
X1 and its predictor X , computed from the model. The estimation procedure is thus
based on a sequential type of algorithm, similar in the nature to the ‘Kalman filter’
algorithm.

The time series data considered in the computer simulations all fall under basically
“AR” type of SDMs. Hence a Kalman recursion 1s now developed for this model. The
approach followed can readily be extended to the more general “ARMA” type SDM.

An “AR” SDM takes the form

Xz =M~ ¢1,t—1Xt—l o ¢2,t—1Xz—2> ------- a_¢k,z—1Xz—k + €,

where

_ (1) (2) (1) (3) (1) (k+1)
w=p  +o Ax,7 oy A7 +a, ' Ax,

= u + Ax(T)a(’)

And for each u,
. t (2) (t (3) (1) (k+1)
=P+ y(l)Ax + yuz)Axt N 7 AX
(t)
u,t—1 + Ax 7/

and (& iy .y =@y Y+
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The State-Dependent Model Approach (Contd.)

V, 1s a matrix having a multivariate normal distribution with zero means and
variance-covariance matrix XV
We can now rewrite 1 in the form:

X =H; O+ ¢
where H, is a 1 by (k+1)? row vector given by,
H =0-X_,-X,;0,0,.......0),

(thereare k(k +1) Osin the H,)

and O, is a (k+1)? by 1 column vector given by,
®t — (lut—17¢1,t—19¢2,t—19 ~~~~~~ ¢kz & (t)Tayl(t)Ta 7/§t)T °°°°°°°° ) 7/18)T)

The evolution of ®, over time 1s given by

O, =F_ 0., +W,

where the (k+1)? by (k+1)? matrix F,_; is given by



The State-Dependent Model Approach (Contd.)

F = []kzl ] AxtT—l
0] Ax[,

[Ik(k+1)]

_ T T T
W, =(0,0.,.....0,v, ,.cc..v 1)

Vi 1seeeVyyy, EING the columns of V..

If we think ©, as the “state” and H, as the “observation” matrix, then a
direct application of the Kalman algorithm to the above equations gives
the recursion

®t — E—1®t—1 + Kt (Xt _HtE—1®t—l)



The State-Dependent Model Approach (Contd.)

where Kt 1s the Kalman “gain’ matrix give by

K =® (H)H®,H) +5)"

(Dt = Ft—lct—l (Ft—l)T + ZW

Ct = (Dt _Kt(Ht(Dt(Ht)T +Ge2)(Kt)T
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The State-Dependent Model Approach (Contd.)

where
0 O
f=ly s
D= E((®t _E—lét—l)(®t _E—l(:)t—l)T)
Ct = E((@)t _(:)t)(®t _(:)t)T)

The 1nitial states are obtained by fitting an AR model for an initial
Stretch of data.
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